Get Answers to all your Questions

header-bg qa

Which of the following functions is not anterentiable in the domain \mathrm{[-1,1]}  ?

Option: 1

\mathrm{f(x)=x^2}


Option: 2

\mathrm{f(x)=x-1}


Option: 3

\mathrm{f(x)=2}


Option: 4

\mathrm{f(x)=\operatorname{maximum}(x,-x)}


Answers (1)

best_answer

\mathrm{\text { Function } f(x)=\text { maximum }(x,-x) \text { is }}

                                                    \mathrm{f(x)=|x|= \begin{cases}+x, & x>0 \\ -x, & x<0\end{cases}}

\mathrm{\text { so } \quad \text { LD (Left derivative) }=-1}

\mathrm{\text { \& } \mathrm{RD} \text { (Right derivative) }=+1}

\mathrm{ \because \quad}                                       \mathrm{ L D \neq R D}

The function is not differentiable at \mathrm{ x=0}

Posted by

Suraj Bhandari

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE