Get Answers to all your Questions

header-bg qa

Which of the following is true for the number 2^{4 n}-2^{n}(7 n+1), where n is any positive Integer?

Option: 1

The highest divisor of the number among the given options is 7.


Option: 2

The highest divisor of the number among the given options is 72.


Option: 3

The highest divisor of the number among the given options is 142.


Option: 4

The highest divisor of the number among the given options is 14.


Answers (1)

best_answer

\begin{array}{l}{2^{4 n}-2^{n}(7 n+1)=(16)^{n}-2^{n}(7 n+1)} \\ {\quad=(2+14)^{n}-2^{n} \cdot 7 n-2^{n}} \\ {\quad=\left(2^{n}+^{n} C_{1} 2^{n-1} \cdot 14+^{n} C_{2} 2^{n-2} \cdot 14^{2}+\ldots+14^{n}\right)-2^{n} \cdot 7 n-2^{n}} \\ {\quad=14^{2}\left(^{n} C_{2} 2^{n-2}+^{n} C_{3} 2^{n-3} 14+\ldots+14^{n-2}\right)+\left(2^{n}+^{n} C_{1} \cdot 2^{n-1} \cdot 14-2^{n} \cdot 7 n-2^{n}\right)} \\ {\quad=14^{2}\left(^n C_{2} 2^{n-2}+^{n} C_{3} 2^{n-3} \cdot 14+\ldots+14^{n-2}\right)+\left(2^{n}+n 2^{n-1} \cdot 2^{1} \cdot 7-2^{n} \cdot 7 n-2^{n}\right)} \\ {\quad=14^{2}\left(^{n} C_{2} \cdot 2^{n-2}+^{n} C_{3} \cdot 2^{n-3} \cdot 14+\ldots+14^{n-2}\right)}\end{array}

This is divisible by 142

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE