Get Answers to all your Questions

header-bg qa

Which of the following satisfies the validity of the limit of the function  \lim _{x \rightarrow p} f(x)=\frac{x^2-p^2}{x-p}   at   x=p?

 

Option: 1

\lim _{x \rightarrow p+} f(x)=\lim _{x \rightarrow p^{-}} f(x)=p


Option: 2

\lim _{x \rightarrow p+} f(x)=\lim _{x \rightarrow p^{-}} f(x)=0


Option: 3

\lim _{x \rightarrow p+} f(x)=\lim _{x \rightarrow p^{-}} f(x)=2p


Option: 4

None of the above


Answers (1)

best_answer

Note that the function f(x)=\frac{x^2-p^2}{x-p} is not defined at x=p as the denominator becomes zero.

But the limit of the function \lim _{x \rightarrow p} f(x)=\frac{x^2-p^2}{x-p} may still exist at x=p only when all the following hold well.

  1. \lim _{x \rightarrow p^{+}} f(x) is defined.

  2. \lim _{x \rightarrow p^{-}} f(x)is defined.

  3. \lim _{x \rightarrow p^{+}} f(x)=\lim _{x \rightarrow p^{-}} f(x)

The provided limit can be reduced in the following way from the fact that  x \rightarrow p \Rightarrow x \neq p 

 \lim _{x \rightarrow p+} f(x)

=x^{2}\, - p^{2}\, /x-p

= (x-p) (x+p) / (x-p)

= x+p           [ x \neq p]         

Now, the Left Hand Limit 

\lim _{x \rightarrow p-} f(x)

=\lim _{h \rightarrow o} f(p-h)

=\lim _{h \rightarrow o} f(p-h+p)

=2p

Now, the Right Hand Limit 

\lim _{x \rightarrow p+} f(x)

=\lim _{h \rightarrow o} f(p+h)

=\lim _{h \rightarrow o} f(p+h+p)

=2p

Thus, \lim _{x \rightarrow p+} f(x)=\lim _{x \rightarrow p^{-}} f(x)=2p

Posted by

SANGALDEEP SINGH

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE