Get Answers to all your Questions

header-bg qa

If Lhas slope 1 and Lis parallel to the line x-\sqrt{3}y+1= 0, then the angle between Land L2 is

Option: 1

\tan^{-1}\left ( \frac{\sqrt{3}-1}{\sqrt{3}+1} \right )


Option: 2

\frac{\pi}{4}


Option: 3

\tan^{-1}\left ( \frac{\sqrt{3}+1}{2} \right )


Option: 4

\tan^{-1}\left ( \sqrt{2}-1 \right )


Answers (1)

best_answer

Given slope of L_{1}= m_{1}= 1 

Now L2 is parallel to x-\sqrt{3}y+1= 0, so slope of L2(m2)  = = slope\: of\: x-\sqrt{3}y+1= 0

= \frac{1}{\sqrt{3}}

Angle between L_{1} and L_{2}
\tan \Theta= \left |\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}\cdot 1} \right |= \left | \frac{\sqrt{3}-1}{\sqrt{3}+1}\right |

Posted by

Shailly goel

View full answer