Get Answers to all your Questions

header-bg qa

If pth term of an HP is q and qth term is p. Then find (p+q)th term

Option: 1

\frac{pq}{p+q}


Option: 2

\frac{p+q}{pq}


Option: 3

p+q


Option: 4

Zero


Answers (1)

best_answer

Let a be first term and d be common difference of corresponding AP.

given pth term of H.P. ap = q

So pth term of AP = \frac{1}{q}

a+(p-1)d=\frac{1}{q}                    ........(1)

Similarly,

a+(q-1)d=\frac{1}{p}                    .......(2)

(1) - (2)

(p-q)d=\frac{1}{q}-\frac{1}{p}

(p-q)d=\frac{p-q}{pq}

\Rightarrow d=\frac{1}{pq}

Using (1)

a+\frac{p-1}{pq}=\frac{1}{q}

a=\frac{1}{pq}                    ........(4)

So (p+q)th term for AP

a+(p+q-1)d

=\frac{1}{pq}+\frac{(p+q-1)}{pq}

=\frac{p+q}{pq}

\therefore a_{p+q} for HP = \frac{pq}{p+q}

Posted by

Rakesh

View full answer