In a exam 52% of the candidates failed in science, 42% in maths and 17% in both. The number of those who passed in both the subjects is
83%
64%
23%
55.5%
Total students $=100$
Failed in science $n(s)=52$
Failed in math $\mathrm{n}(\mathrm{m})=42$
Failed in both $n(s \& m)=17$
Failed in either math or science $\mathrm{n}(\mathrm{m}$ or $\mathrm{s})$
$\begin{aligned} & \mathrm{N}(\mathrm{m} \text { or } \mathrm{s})=\mathrm{n}(\mathrm{m})+\mathrm{n}(\mathrm{s})-\mathrm{n}(\mathrm{m} \& \mathrm{~s}) \\ & \mathrm{N}(\mathrm{m} \text { or } \mathrm{s})=52+42-17=77\end{aligned}$
Passed in both the subjects $=100-77=23$