Get Answers to all your Questions

header-bg qa

In triangle PQR, S and T are points on sides PR and QR of \trianglePQR such that \angle P=\angle RTS then,

Option: 1

\triangle R P Q \sim \triangle R T S


Option: 2

\triangle R P Q \cong \triangle R T S


Option: 3

\triangle R P Q \nsim \triangle R T S


Option: 4

None of the above


Answers (1)

best_answer

\\ \text{In } \triangle R P Q \text{ and }\triangle R T S, \text{ we have} \\\\\angle P=\angle R T S \quad \text { (given) } \\ \\\angle R=\angle R \quad \text{ (common)} \\\\\therefore \quad \triangle R P Q \sim \triangle R T S \quad \text{ [by AA-similarity]}

Posted by

SANGALDEEP SINGH

View full answer