Get Answers to all your Questions

header-bg qa

Roots of  x^{2}+\left ( 2-i \right )x-2i=0  are

Option: 1

i,2


Option: 2

i,1


Option: 3

i,-2


Option: 4

2i,-1


Answers (1)

best_answer

x^{2}+\left ( 2-i \right )x-2i=0\\

a=1,b=2-i,c=-2i\\

x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\

=\frac{-\left ( 2-i \right )\pm \sqrt{\left ( 2-i \right )^{2}-4\cdot 1\left ( -2i \right )} }{2}\\

=\frac{\left ( i-2 \right )\pm \sqrt{4+ i ^{2}-4i+8i} }{2}\\

=\frac{\left ( i-2 \right )\pm \sqrt{\left ( 2+i \right )^{2}}}{2}\\

=\frac{\left ( i-2 \right )+\left ( 2+i \right )}{2},\frac{\left ( i-2 \right )-\left ( 2+i \right )}{2}

= i,-2

Alternative Method

x^{2}+\left ( 2-i \right )x-2i=0\\

\Rightarrow x^{2}+2x-ix-2i=0\\

\Rightarrow x\left ( x+2 \right )-i\left ( x+2 \right )= 0\\

\Rightarrow \left ( x-i \right )\left ( x+2 \right )=0\\

\Rightarrow \left ( x-i \right )=0\: \: or \:\: \left ( x+2 \right )=0

\Rightarrow x=i\: \: or\: \: x=-2

Posted by

Gunjita

View full answer