Get Answers to all your Questions

header-bg qa

Solution of inequality  \frac{x\left ( 2-x \right )}{x^{2}-4x+3}> 0  is

Option: 1

\left ( 0,1 \right )\cup \left ( 2,3 \right )


Option: 2

\left [ 0,1 \right )\cup \left [ 2,3 \right )


Option: 3

\left ( -\infty, 0 \right )\cup \left ( 1,2 \right )\cup \left ( 3,\infty \right )


Option: 4

\left ( -\infty,0 \right ]\cup \left ( 1,2 \right]\cup \left ( 3,\infty \right )


Answers (1)

best_answer

1. 0 is on one side

2. we do not have all linear factor, so

  \frac{x\left ( 2-x \right )}{\left ( x-1 \right )\left ( x-3 \right )}> 0

3. Coefficient of x is negative in \left ( 2-x \right ) so

 \frac{x\cdot \left ( -1 \right )\left ( x-2 \right )}{\left ( x-1 \right )\left ( x-3 \right )}> 0 

This \left ( -1 \right ) has to be cross multiplied to remove it,but it is negative, so direction of inequality will change

\frac{x\left ( x-2 \right )}{\left ( x-1 \right )\left ( x-3 \right )}< 0

4. Critical point

x=0\Rightarrow x=0\\

x-2=0\Rightarrow x=2\\

x-1=0\Rightarrow x=1

x-3=0\Rightarrow x=3

(All powers are odd)

5. Number line

6. Rightmost internal is (+)ve, but we need negative values, so we do not need rightmost interval and we put (-) sign on it and then put alternative signs

In answer all (+)ve intervals are taken. So \left ( 0,1 \right ) and \left ( 2,3\right ) are included in the answer

7. Check all critical points

At x=1 and x=3 expression is not defined, so excluded.

At x=0,2, expression= 0. BUt these are also excluded as we need < 0 and not \leq 0

8. So,answer is \left ( 0,1 \right )\cup \left ( 2,3 \right )

Posted by

Pankaj Sanodiya

View full answer