Get Answers to all your Questions

header-bg qa

Two sides AB and BC, and the median AD of \DeltaABC are correspondingly equal to the two sides PQ and QR, and the median PM of \DeltaPQR. Then,

Option: 1

\angle A B C=\angle P Q R


Option: 2

BD=QM


Option: 3

\triangle A B C \cong \Delta P Q R


Option: 4

All of the above


Answers (1)

best_answer

\\\text{In } \triangle A B D\text{ and }\triangle P Q M,\text{ we have} \\\\A B=P Q \quad(\text { given }) \\ \\B D=Q M \quad\left[\because B C=Q R \Rightarrow \frac{1}{2} B C=\frac{1}{2} Q R \Rightarrow B D=Q M\right] \\\\\text { med. } A D=\text { med. } P M \quad(\text { given })

\\\therefore \quad \triangle A B D \cong \triangle P Q R \quad \text { (SSS-criteria) } \\\\ \therefore \quad \angle A B D=\angle P Q M \quad( \text { c.p.c.t.) } \\\\ \Rightarrow \quad \angle A B C=\angle P Q R\\ \\\text{Now, in } \triangle A B C\text{ and } \triangle P Q R,\text{ we have} \\\\ A B=P Q \quad(\text { given })

\\ \angle A B C=\angle P Q R \quad \text { (proved above) } \\ \\B C=Q R \quad \text { (given). } \\ \\\therefore \quad \triangle A B C \cong \Delta P Q R \quad \text { (SAS-criteria). }

 

Posted by

HARSH KANKARIA

View full answer