Get Answers to all your Questions

header-bg qa

Two sides of a triangle are 5 cm and 12 cm long. The measure of the third side is an integer in cm. If the triangle is an obtuse triangle, then how many such triangles are possible?

Option: 1

6


Option: 2

7


Option: 3

8


Option: 4

9


Answers (1)

best_answer

Two sides of a triangle 5 cm and 12 cm.

Let a = 5 cm and b = 12 cm

Let the third side be x cm

\begin{array}{l} \therefore 12-5<x<12+5 \\ \Rightarrow 7<x<17 \end{array}

therefore, possible integer values for x are 8, 9, 10, 11, 12, 13, 14, 15 and 16.

\begin{aligned} &\text { Case } 1 \text { : If } b \text { is the longest side then } b^{2}>a^{2}+x^{2}\\ &\Rightarrow 12^{2}>5^{2}+x^{2}\\ &\Rightarrow 144-25>x^{2}\\ &\Rightarrow x^{2}<119\\ &\therefore x \text { can be } 8,9 \text { or } 10 . \end{aligned}

\begin{aligned} &\text { Case } 2: \text { If } x \text { is the longest side, then } x^{2}>a^{2}+b^{2}\\ &\Rightarrow x^{2}>5^{2}+12^{2} \Rightarrow x^{2} \Rightarrow 169\\ &\therefore x \text { can be } 14,15 \text { or } 16 \end{aligned}

The number of possible triangles = 6 (?The measurement third side is an integer in cm).

Posted by

shivangi.bhatnagar

View full answer