Get Answers to all your Questions

header-bg qa

A light charged particle is revolving in a circle of radius r in electrostatic attraction of a static heavy particle with opposite charge. How does the magnetic field B at the centre of the circle due to the moving charge depend on r ?

Option: 1

B \propto \frac{1}{r}


Option: 2

B \propto \frac{1}{r^2}


Option: 3

B \propto \frac{1}{r^{3/2}}


Option: 4

B \propto \frac{1}{{r}^{5 / 2}}


Answers (1)

best_answer

Let a light particle of mass m and charge q_2 revolve around a heavy particle of charge +q_1 in a circular path of radius r with a velocity v 

Now, \frac{m v^2}{r}=\frac{1}{4 \pi \epsilon_0} \frac{\left(+q_1\right) \times\left(-q_2\right)}{r^2}

\begin{aligned} & \text { or, } r^2=\frac{1}{4 \pi E_0} \cdot \frac{-q_1 q_2}{m r} \\ & \therefore \quad V \propto \frac{1}{\sqrt{r}} \end{aligned}

Time period of the charge in circular orbit.T=\frac{2 \pi r}{v}

\therefore Current due to the revolving charge

I=\frac{-q_2}{T}=\frac{q_2 \times v}{2 \pi r}

\therefore I \propto \frac{v}{r} \text { or } I \propto \frac{1}{r^3 / 2}\left[\because V \propto \frac{1}{\sqrt{r}}\right]

So, magnetic field at the centre of the circle due to the moving charge+q_2,

B=\frac{\mu_0 I}{2 r} \text { or }, B \propto \frac{I}{r}

\text { or } B \propto \frac{1}{r^{3 / 2} \times r} \text { or, } B \propto \frac{1}{r^{5 / 2}}

Posted by

qnaprep

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks