Get Answers to all your Questions

header-bg qa

A series LCR circuit containing 5.0 H inductor 80\mu F capacitor  and 40\Omega resistor is connected to 230 V variable frequency ac source .The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency  are likely to be :

Option: 1

25 rad/s and 75 rad/s


Option: 2

50 rad/s and 25 rad/s


Option: 3

46 rad/s and 54 rad/s


Option: 4

42 rad/s and 58 rad/s


Answers (1)

best_answer

L=5H                            P_{0}\rightarrowPower at resonance

C=80\mu F                       w_{0}\rightarrowResonace angular frequency

R=40\Omega                          at resonace,X_{c}=X_{L} 

P=\frac{1}{2}P_{0}                            w_{0}C=\frac{1}{w_{0}L}

                                           w_{0}=\frac{1}{\sqrt{LC}}=\frac{1}{20\times 10^{-3}} 

                                            w_{0}=50\: rad/s

P=V_{rms}I_{rms}\cos \phi _{1}

P_{0}=V_{rms}I_{rms}\cos \phi _{0}

\cos \phi _{0}=\frac{1}{2}

\cos \phi _{1}=\frac{1}{2}                    \cos \phi _{o}=\frac{R}{Z}

\frac{R}{Z_{1}}=\frac{1}{2}                            \phi _{o}=0^{o};\cos \phi _{o}=1

80=Z_{1}=\sqrt{\left ( X_{L}-X_{c} \right )^{2}+R^{2}}

6400=\left ( X_{L}-X_{c} \right )^{2}+1600

4800=\left ( X_{L}-X_{c} \right )^{2}

4800=\left ( wL-\frac{1}{wc} \right )^{2}

40\sqrt{3}=\left ( wL-\frac{1}{wc} \right )

w=25rad/s

w_{o}=50\: rad/s\: \: \: \: \: w=25\: \: rad/s

Posted by

HARSH KANKARIA

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks