Get Answers to all your Questions

header-bg qa

Consider a circular wire of radius R moving towards a region of constant and uniform magnetic field \vec B perpendicular to the plane of circular wire . It is pushed into the region of magnetic field with a constant velocity v at t = 0 . The induced emf at time t , when the edge of field region subtends an angle \theta at the centre 

Option: 1

BRv \sin \frac{\theta }{2}


Option: 2

BRv \sin {\theta }


Option: 3

2BRv \sin \frac{\theta }{2}


Option: 4

2BRv \sin {\theta }


Answers (1)

best_answer

As we have learned

If the loop is free to move -

Relative motion can also  cause the induced emf in the coil.

-

 

 Let at any instant of time t , the edge of field region makes an angle \theta at  centre . So area , of circular wire which has gone inside the field region is 

                     dA = \frac{1}{2}R^2\theta -\frac{1}{2}R^2 \sin \theta

NOw induced emf 

         \varepsilon = \frac{-d\phi }{dt}

\varepsilon = -B\frac{d }{dt}\left ( \frac{1}{2}R^2 \theta -\frac{1}{2}R^2\sin \theta \right )

\varepsilon = -B\left [ \frac{R^2}{2}\frac{d\theta }{dt}-\frac{R^2}{2}\cos \theta \frac{d\theta }{dt} \right ]............ (1)

Also 

v = \frac{d}{dt}(R \cos \frac{\theta }{2})

v =\frac{-R}{2}\sin \frac{\theta }{2} \frac{d\theta }{dt}

\varepsilon = B \frac{R^2}{2}(1- \cos \theta )\frac{2V}{R \sin \frac{\theta }{2}}

= \frac{BRv }{\sin \frac{\theta }{2}}2 \sin ^{2}\frac{\theta }{2}

\varepsilon = 2 BRv \sin \frac{\theta }{2}

 

 

 

Posted by

Divya Prakash Singh

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks