Q

# error in parallel resistance part is what I m not getting How is it derived

That error in parallel resistance part is what I m not getting....How is it derived?
Views

@ Anupam

Since R1 and R2 are in parallel

So $\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} ......(1)$

Differtiate LHS we get $\frac{\partial (\frac{1}{R_{p}} )}{\partial R_{p}}=\frac{-1}{R_{p}^2}$

$\partial (\frac{1}{R_{p}} )=\frac{ -\partial R_{p}}{R_{p}^2}$

$\Delta (\frac{1}{R_{p}} )=\frac{-\Delta R_{p}}{R_{p}^2} ....(2)$

Similary We get for RHS   $\frac{\partial (\frac{1}{R_{1}} )}{\partial R_{1}}=\frac{-1}{R_{1}^2}$

$\partial (\frac{1}{R_{1}} )=\frac{ -\partial R_{1}}{R_{1}^2}$

$\Delta (\frac{1}{R_{1}} )=\frac{-\Delta R_{1}}{R_{1}^2} ....(3)$

&                                      $\Delta (\frac{1}{R_{2}} )=\frac{-\Delta R_{2}}{R_{2}^2} ....(4)$

So from equation 1,2 ,3 4 We get

$\frac{-\Delta R_{p}}{R_{p}^2} = \frac{-\Delta R_{1}}{R_{1}^2} +\frac{-\Delta R_{2}}{R_{2}^2}$

So       ${\Delta R_{p}} =\Delta R_{1} \frac{R_{p}^2}{R_{1}^2} +\Delta R_{2} \frac{R_{p}^2}{R_{2}^2}$

Exams
Articles
Questions