Get Answers to all your Questions

header-bg qa

If a voltage applied to an X-ray tube is increased by \mathrm{\eta=1.5 \text { times, }} the short wavelength limit of an X-
ray continuous spectrum shifts by \mathrm{\Delta \lambda=26 \mathrm{pm} \text {. }}. Find the initial voltage applied to the tube.

Option: 1

12000V


Option: 2

14000 eV


Option: 3

15000 eV


Option: 4

16000V


Answers (1)

best_answer

The maximum energy given to X-ray photon is given by
\mathrm{h v_{\max }=e V}
where V = applied voltage to X-ray tube

\mathrm{\therefore V_{\max }=\frac{e V}{h}}

\mathrm{\text { Therefore } \lambda_{\min }=\frac{c h}{e V}}

\mathrm{\text { Here, } \lambda_1=\frac{c h}{e V_1} \text { and } \lambda_2=\frac{c h}{e V_2}}

\mathrm{\text { therefore, } \Delta \lambda=\lambda_2-\lambda_1=\frac{c h}{e}\left[\frac{1}{V_2}-\frac{1}{V_1}\right] \text {. Given } \mathrm{V}_2=1.5 \mathrm{~V}_1}

\mathrm{\text { Solving we get } V_1=16000 \text { Volt. }}

Posted by

Irshad Anwar

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks