Get Answers to all your Questions

header-bg qa

If \mathrm{R_m} is the radius of moon orbit round the earth, \mathrm{a_m} the acceleration of moon towards the centre of earth, and \mathrm{R_e} the radius of earth. Then \mathrm{a_m} is equal to (if \mathrm{g} is acceleration due to gravity on the surface of earth)
 

Option: 1

\mathrm{\left(\frac{R_e}{R_m}\right) g}    

 


Option: 2

\mathrm{\left(\frac{\mathrm{R}_{\mathrm{m}}}{\mathrm{R}_{\mathrm{e}}}\right) \mathrm{g}}
 


Option: 3

\mathrm{\left(\frac{R_m}{R_e}\right)^2 g}
 


Option: 4

\mathrm{\left(\frac{R_e}{R_m}\right)^2 g}


Answers (1)

best_answer

\mathrm{ \mathrm{g}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}^2} }            ............(1)

\mathrm{ \mathrm{a}_{\mathrm{m}}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{m}}^2} }         ...........(2)

\mathrm{ \frac{(2)}{(1)}, \frac{a_m}{g}=\frac{\frac{\mathrm{GM}_e}{\mathrm{R}_{\mathrm{m}}^e}}{\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}^2}}=\frac{\mathrm{R}_{\mathrm{e}}^2}{\mathrm{R}_{\mathrm{m}}^2} ; \mathrm{a}_{\mathrm{m}}=\left(\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{m}}}\right)^2 \mathrm{gf} }

Hence option 4 is correct.

 



 

Posted by

Divya Prakash Singh

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks