Get Answers to all your Questions

header-bg qa

If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is :

  • Option 1)

    25

  • Option 2)

    75

  • Option 3)

    60

  • Option 4)

    50

 

Answers (2)

best_answer

As we have learned in

De - Broglie wavelength -

\lambda = \frac{h}{p}= \frac{h}{mv}= \frac{h}{\sqrt{2mE}}

- wherein

h= plank's\: constant

m= mass \: of\: particle

v= speed \: of\: the \: particle

E= Kinetic \: energy \: of \: particle

 

 

 

Kinetic energy = \frac{p^{2}}{2m} = \frac{h^{2}}{2m\:\lambda ^{2}}

or \lambda ^{2}= \frac{h^{2}}{2m\:E}         (E = Kinetic energy)

When E becomes 16 E, \lambda becomes \lambda '

\lambda ' \:^{2}= \frac{h^{2}}{2m\left ( 16\:E \right )} = \frac{1}{16}\:\lambda ^{2}

\lambda ' = \frac{\lambda }{4}

Change in wavelength   = \lambda - \lambda ' = \frac{3\lambda }{4}

\therefore \%\: change = \frac{change\:in\:\lambda }{\lambda }\times 100\%=75\%

                          


Option 1)

25

This option is incorrect

Option 2)

75

This option is correct

Option 3)

60

This option is incorrect

Option 4)

50

This option is incorrect

Posted by

Aadil

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


2) 75

Posted by

Siddiqui Fareed

View full answer