Get Answers to all your Questions

header-bg qa

Suppose the gravitational force varies inversely as the nth power of distance then the time period \mathrm{T}of a satellite revolving in a circular orbit of radius \mathrm{r} around the earth is proportional to

Option: 1

\mathrm{r^{\frac{n+1}{2}}}


Option: 2

\mathrm{r^{\frac{n-1}{2}}}


Option: 3

\mathrm{\frac{1}{\sqrt r^{n}-1}}


Option: 4

\mathrm{\frac{1}{\sqrt r^{n}+1}}


Answers (1)

best_answer

\mathrm{ \frac{G M m}{r^n}=m r\left(\frac{2 \pi}{T}\right)^2 }

\mathrm{ T^2=\frac{4 \pi^2 r^{n+1}}{G M} \Rightarrow T \propto r^{\frac{n+1}{2}}}

Hence option 1 is correct.

 

Posted by

Divya Prakash Singh

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks