Get Answers to all your Questions

header-bg qa

The ionisation potential of hydrogen atom is \mathrm{13.6 \: eV}. The energy required to remove an electron from the second orbit of hydrogen will be
 

Option: 1

\mathrm{27.4\: eV}


Option: 2

\mathrm{13.6\: eV}


Option: 3

\mathrm{3.4\: eV}


Option: 4

None of these


Answers (1)

best_answer

The potential energy of hydrogen atom.

\mathrm{ E_n=-\frac{13.6}{n^2} \mathrm{eV} }

So, the potential energy in second orbit is

\mathrm{ E_2 =-\frac{136}{(2)^2} \mathrm{eV} }

\mathrm{ E_2 =-\frac{13.6}{2} \mathrm{eV} }

\mathrm{ =-3.4 \mathrm{eV} }

Now, the energy required to remove an electron from second orbit to infinity, is

\mathrm{ U=E_{\infty}-E_2 }

[from work-energy theorem and \mathrm{ E_{\infty}=0 } ]

\mathrm{ \Rightarrow U =0-(-3.4) \mathrm{eV} }

\mathrm{ \text { or } U =3.4 \mathrm{eV} }

Hence, the required energy is \mathrm{ 3.4 \mathrm{eV}. }

Posted by

Pankaj

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks