Get Answers to all your Questions

header-bg qa

The magnetic induction at the centre O in fig shown is

Option: 1

\frac{\mu _{0}i}{4}\left [ \frac{1}{R_1}-\frac{1}{R_2} \right ]


Option: 2

\frac{\mu _{0}i}{4}\left [ \frac{1}{R_1}+\frac{1}{R_2} \right ]


Option: 3

\frac{\mu _{0}i}{4}\left [ {R_1}-R_2 \right ]


Option: 4

\frac{\mu _{0}i}{4}\left [ {R_1}+R_2 \right ]


Answers (1)

best_answer

As we learnt

 

If the direction of currents are different in concentric circles -

 

B_{1}=\frac{\mu_{o}i}{2}\:\left [\frac{n_{1}}{r_{1}}-\frac{n_{2}}{r_{2}} \right ]

-

 

 

Mag. field at O due to sections 1,2,3,4 are considered as B_1,B_2,B_3,B_4.

B_1=B_3=0 lies on pt.

B_2=\frac{\mu _{0}}{4\pi}*\frac{\pi i}{R_1}\left ( x \right )\: \: \: \: \: B_4=\frac{\mu _{0}}{4\pi}*\frac{\pi i}{R_2}

B_{net}= B_2-B_4  \Rightarrow \frac{\mu _{0}i}{4}\left [ \frac{1}{R_1}-\frac{1}{R_2} \right ]  Current opposite.

 

Posted by

SANGALDEEP SINGH

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks