Get Answers to all your Questions

header-bg qa

Three concentric spherical shells have radii a, b and c (a < b < c) and have surface charge densities \sigma, -\sigma and \sigma respectively. If VA, VB and Vc denote the potentials of the three shells, then for c = a + b, we have:

Option: 1

\text{V}_{\text{C}}=\text{V}_{\text{B}}\neq\text{V}_{\text{A}}


Option: 2

\text{V}_{\text{C}}\neq\text{V}_{\text{B}}\neq\text{V}_{\text{A}}


Option: 3

\text{V}_{\text{C}}=\text{V}_{\text{B}}=\text{V}_{\text{A}}


Option: 4

\text{V}_{\text{C}}=\text{V}_{\text{A}}\neq\text{V}_{\text{B}}


Answers (1)

best_answer

Outside the sphere (P lies outside the sphere) -

dpi{100} E_{out}=frac{1}{4pi epsilon _{0}}frac{Q}{r^{2}}=frac{sigma R^{2}}{epsilon _{0}r^{2}}

V_{out}=frac{1}{4pi epsilon _{0}}frac{Q}{r}=frac{sigma R^{2}}{epsilon _{0}r}

where

sigma - surface charge density.

At the surface of the Sphere -

V=R

E_{s}=frac{1}{4pi epsilon _{0}}frac{Q}{R^{2}}=frac{sigma }{epsilon _{0}}

V_{s}=frac{1}{4pi epsilon _{0}}frac{Q}{R}=frac{sigma R}{epsilon _{0}}

 

 

V_{A} = \frac{kq_{A}}{a}+\frac{kq_{B}}{b}+\frac{kq_{C}}{c}

= \frac{k.\sigma .4\pi a^{2}}{a}-\frac{k.\sigma .4\pi b^{2}}{b}+\frac{k.\sigma .4\pi c^{2}}{c}

V_{A}=k.\sigma .4\pi \left ( a-b+c \right )

V_{B}= \frac{kq_{A}}{b}+\frac{kq_{B}}{b}+\frac{kq_{C}}{c}

=\frac{k.\sigma .4\pi a^{2}}{b}+\frac{k\left ( -\sigma .4\pi b^{2} \right )}{b}+\frac{k.\sigma .4\pi c^{2}}{c}

= 4\pi k\sigma \left [ \frac{a^{2}}{b}-b+c\right ]

= 4\pi k\sigma \left ( \frac{a^{2}-b^{2}+bc}{b} \right )

V_{c} =\frac{k.q_{A}}{a}+\frac{k.q_{B}}{b}+\frac{k.q_{C}}{c}

= \frac{k.\sigma 4\pi a^{2}}{c}-\frac{k.\sigma 4\pi b^{2}}{c}+\frac{k.\sigma 4\pi c^{2}}{c}

= 4\pi k\sigma \frac{\left [ a^{2}-b^{2}+c^{2}\right ]}{c}

4\pi k\sigma \left [ \frac{\left ( a-b \right ).\left ( a+b \right )}{c} +c\right ]

=4\pi k\sigma \left [ a-b+c \right ]\left [ \therefore a+b=c \right ]

\therefore V_{A}=V_{C}\neq V_{B}

Posted by

HARSH KANKARIA

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks