1.   Determine the ratio in which the line 2x + y – 4 = 0 divides the line segment joining the points A(2, – 2) and B(3, 7).

Answers (1)
D Divya Prakash Singh

Let the line divide the line segment AB in the ratio  k:1 at point C.

Then, the coordinates of point C will be:

C(x,y) = \left ( \frac{3k+2}{k+1},\frac{7k-2}{k+1} \right )

Point C will also satisfy the given line equation 2x + y - 4 = 0, hence we have

\Rightarrow 2\left ( \frac{3k+2}{k+1} \right )+\left (\frac{7k-2}{k+1} \right ) - 4 = 0

\Rightarrow \frac{6k+4+7k-2-4k-4}{k+1} = 0      

\Rightarrow 9k-2 = 0

\Rightarrow k=\frac{2}{9}

Therefore, the ratio in which the line 2x + y - 4 = 0 divides the line segment joining the points A(2,-2) and B(3,7) is 2:9 internally.

Exams
Articles
Questions