# Q9.    Expand using Binomial Theorem $\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$

Given the expression,

$\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$

Binomial expansion of this expression is

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4\\=\left ( \left (1 + \frac{x}{2} \right ) -\frac{2}{x}\right )^4=^4C_0\left ( 1+\frac{x}{2} \right )^4-^4C_1\left ( 1+\frac{x}{2} \right )^3\left ( \frac{2}{x} \right )+$$^4C_2\left ( 1+\frac{x}{2} \right )^2\left ( \frac{2}{x} \right )^2$$-^4C_3\left ( 1+\frac{x}{2} \right )\left ( \frac{2}{x} \right )^3+^4C_4\left ( \frac{2}{x} \right )^4$

$\Rightarrow \left ( 1+\frac{x}{2} \right )^4-\frac{8}{x}\left ( 1+\frac{x}{2} \right )^3+$$\frac{24}{x^2}+\frac{24}{x}+6$$-\frac{32}{x^3}+\frac{16}{x^4}..........(1)$

Now Applying Binomial Theorem again,

$\left ( 1+\frac{x}{2} \right )^4=^4C_0(1)^4+^4C_1(1)^3\left ( \frac{x}{2} \right )+^4C_2(1)^2\left ( \frac{x}{2} \right )^2+^4C_3(1)\left ( \frac{x}{2} \right )^3$$+^4C_4\left ( \frac{x}{2} \right )^4$

$= 1+ 4\left ( \frac{x}{2} \right )+6\left ( \frac{x^2}{4} \right )+4\left ( \frac{x^3}{8} \right )+\frac{x^4}{16}$

$=1+2x+\frac{3x^2}{2}+\frac{x^3}{3}+\frac{x^4}{16}..............(2)$

And

$\left ( 1+\frac{x}{2} \right )^3=^3C_0(1)^3+^3C_1(1)^2\left ( \frac{x}{2} \right )+^3C_2(1)\left ( \frac{x}{2} \right )^2+^3C_3\left ( \frac{x}{2} \right )^3$

$\left ( 1+\frac{x}{2} \right )^3= 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^3}{8}..........(3)$

Now, From (1), (2) and (3) we get,

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$$+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}-12-6x-x^2$$+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$$=\frac{16}{x}+\frac{8}{x^2}-\frac{32}{x^3}+\frac{16}{x^4}-4x+\frac{x^2}{2}+\frac{x^3}{2}+\frac{x^4}{16}-5$

## Related Chapters

### Preparation Products

##### Knockout MET 2021

An exhaustive E-learning program for the complete preparation of MET online exam..

₹ 4999/- ₹ 2999/-
##### Knockout MET JEE Main 2021

An exhaustive E-learning program for the complete preparation of MET & JEE.

₹ 27990/- ₹ 16999/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
##### Knockout BITSAT 2020

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 1999/-