Q6.    Find the 13th term in the expansion of    \left(9x - \frac{1}{3\sqrt x} \right )^{18},\ x\neq 0

Answers (1)

As we know that the general  (r+1)^{th} term  T_{r+1} in the binomial expansion of  (a+b)^n  is given by 

T_{r+1}=^nC_ra^{n-r}b^r

So the 13^{th} term of the expansion of     \left(9x - \frac{1}{3\sqrt x} \right )^{18}   is

\\\Rightarrow T_{13}= T_{12+1}\\=^{18}C_{12}(9x)^{18-12}\left(\frac{1}{3\sqrt{x}}\right)^{12}\\ \\ \\=\frac{18!}{12!6!}\times9^{6}\left ( \frac{1}{3} \right )^{12}\times x^{6-6}

\\=\frac{18\times17\times16\times15\times14\times13}{6\times5\times4\times3\times2}\times9^{6}\left ( \frac{1}{3^{12}} \right )

=18564

Preparation Products

Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
Buy Now
Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Exams
Articles
Questions