Q&A - Ask Doubts and Get Answers
Q

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 16 x ^ 2 - 8 y ^ 2 = 576

 4.  Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.

     16x^2 - 9y^2 = 576

Answers (1)
Views

Given a Hyperbola equation,

16x^2 - 9y^2 = 576

Can also be written as 

\frac{16x^2}{576} - \frac{9y^2}{576} = 1

\frac{x^2}{36} - \frac{y^2}{64} = 1

\frac{x^2}{6^2} - \frac{y^2}{8^2} = 1

Comparing this equation with the standard equation of the hyperbola:

\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

We get,

a=6 and b=8

Now, As we know the relation in a hyperbola,

c^2=a^2+b^2

c=\sqrt{a^2+b^2}

c=\sqrt{6^2+8^2}

c=10

Therefore,

Coordinates of the foci:

(c,0) \:and\:(-c,0)=(10,0)\:and\:(-10,0)

The Coordinates of vertices:

(a,0) \:and\:(-a,0)=(6,0)\:and\:(-6,0)

The Eccentricity:

e=\frac{c}{a}=\frac{10}{6}=\frac{5}{3}

The Length of the latus rectum :

\frac{2b^2}{a}=\frac{2(8)^2}{6}=\frac{128}{6}=\frac{64}{3}

Exams
Articles
Questions