# Q: 11     Find the equation of the lines through the point $\small (3,2)$ which make an angle of  $\small 45^{\circ}$ with the line  $\small x-2y=3$.

Given the equation of the line is
$\small x-2y=3$
The slope of line $\small x-2y=3$ , $m_2= \frac{1}{2}$
Let the slope of the other line is, $m_1=m$
Now, it is given that both the lines make an angle $\small 45^{\circ}$ with each other
Therefore,
$\tan \theta = \left | \frac{m_2-m_1}{1+m_1m_2} \right |$
$\tan 45\degree = \left | \frac{\frac{1}{2}-m}{1+\frac{m}{2}} \right |$
$1= \left | \frac{1-2m}{2+m} \right |$
Now,

Case (i)
$1=\frac{1-2m}{2+m}$
$2+m=1-2m$
$m = -\frac{1}{3}$
Equation of line passing through the point  $\small (3,2)$  and  with slope $-\frac{1}{3}$
$(y-2)=-\frac{1}{3}(x-3)$
$3(y-2)=-1(x-3)$
$x+3y=9 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -(i)$

Case (ii)
$1=-\left ( \frac{1-2m}{2+m} \right )$
$2+m=-(1-2m)$
$m= 3$
Equation of line passing through the point  $\small (3,2)$  and  with slope 3  is
$(y-2)=3(x-3)$
$3x-y=7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -(ii)$

Therefore, equations of lines are $3x-y=7$  and $x+3y=9$

Exams
Articles
Questions