# Q10.    Find the expansion of $(3x^2 - 2ax +3a^2)^3$ using binomial theorem.

Given $(3x^2 - 2ax +3a^2)^3$

By Binomial Theorem It can also be written as

$(3x^2 - 2ax +3a^2)^3=((3x^2 - 2ax) +3a^2)^3$

$= ^3C_0(3x^2-2ax)^3+^3C_1(3x^2-2ax)^2(3a^2)+^3C_2(3x^2-2ax)(3a^2)^2+^3C_3(3a^2)^3$

$= (3x^2-2ax)^3+3(3x^2-2ax)^2(3a^2)+3(3x^2-2ax)(3a^2)^2+(3a^2)^3$

$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+36a^4x^2+81a^4x^2-54a^5x+27a^6$

$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+117a^4x^2-54a^5x+27a^6...........(1)$

Now, Again By Binomial Theorem,

$(3x^2-2ax)^3=^3C_0(3x^2)^3-^3C_1(3x^2)^2(2ax)+^3C_2(3x^2)(2ax)^2-^3C_3(2ax)^3$

$(3x^2-2ax)^3= 27x^6-3(9x^4)(2ax)+3(3x^2)(4a^2x^2)-8a^2x^3$

$(3x^2-2ax)^3= 27x^6-54x^5+36a^2x^4-8a^3x^3............(2)$

From (1) and (2) we get,

$(3x^2-2ax+3a^2)^3=27x^6-54x^5+36a^2x^3+81a^2x^4-108a^3x^3+117a^4x^2$$-54a^5x+27a^6$

$(3x^2-2ax+3a^2)^3=27x^6-54x^5+117a^2x^3-116a^3x^3+117a^4x^2$$-54a^5x+27a^6$

## Related Chapters

### Preparation Products

##### Knockout MET 2021

An exhaustive E-learning program for the complete preparation of MET online exam..

₹ 4999/- ₹ 2999/-
##### Knockout MET JEE Main 2021

An exhaustive E-learning program for the complete preparation of MET & JEE.

₹ 27990/- ₹ 16999/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
##### Knockout BITSAT 2020

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 1999/-