Q (8)  Find the general solution of the following equation 

   \small \sec^{2}2x = 1 - \tan2x

Answers (1)

We know that 
\sec^{2}x = 1 + \tan^{2}x
So,
       1 + \tan^{2}2x = 1 -\tan2x
       \tan^{2}2x + \tan2x = 0\\ \\ \tan2x(\tan2x+1) = 0
 either
      tan2x = 0             or                     tan2x = -1                                                  (     \tan x = \tan \left ( \pi - \frac{\pi}{4} \right ) = \tan\frac{3\pi}{4} )
            2x = n\pi                       2x=n\pi + \frac{3\pi}{4}
               x=\frac{n\pi}{2}                        x=\frac{n\pi}{2} + \frac{3\pi}{8}
  Where n \epsilon Z

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions