Q7.16     From a uniform disk of radius R , a circular hole of radius R/2  is cut out. The centre
              of the hole is at R/2 from the centre of the original disc. Locate the centre of gravity
             of the resulting flat body.

Answers (1)

Let the mass per unit area of the disc be \sigma.

So total mass is   =\ \Pi r^2\sigma\ =\ m

                                                               Rotational motion,     20131

       Mass of the smaller disc is given by : 

                                                                               =\ \Pi \left ( \frac{r}{2} \right )^2\sigma\ =\ \frac{m}{4}

Now since the disc is removed, we can assume that part to have negative mass with respect to the initial condition.

So, the centre of mass of the disc is given by the formula :

                                                               x\ =\ \frac{m_1r_1\ +\ m_2r_2}{m_1\ +\ m_2}

or                                                                    =\ \frac{m\times 0\ -\ \frac{m}{4}\times \frac{r}{2}}{m\ -\ \frac{m}{4}}

                                                                      =\ \frac{-r}{6}

Hence the centre of mass is shifted   \frac{r}{6}   leftward from point O.

Preparation Products

Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions