Q

(i) For which values of a and b does the following pair of linear equations have an infinite number of solutions? 2x + 3y = 7 (a - b) x + (a + b) y = 3a + b - 2

Q2.    (i) For which values of a and b does the following pair of linear equations have an infinite number of solutions?
$\\2x + 3y = 7 \\(a - b) x + (a + b) y = 3a + b - 2$

Views

Given     equations,

$\\2x + 3y = 7 \\(a - b) x + (a + b) y = 3a + b - 2$

As we know, the condition for equations $a_1x+b_1y+c_1=0\:and\:a_2x+b_2y+c_2=0$  to have an infinite solution is

$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$

So, Comparing these equations with, $a_1x+b_1y+c_1=0\:and\:a_2x+b_2y+c_2=0$, we get

$\frac{2}{a-b}=\frac{3}{a+b}=\frac{7}{3a+b-2}$

From here we get,

$\frac{2}{a-b}=\frac{3}{a+b}$

$\Rightarrow 2(a+b)=3(a-b)$

$\Rightarrow 2a+2b=3a-3b$

$\Rightarrow a-5b=0.........(1)$

Also,

$\frac{2}{a-b}=\frac{7}{3a+b-2}$

$\Rightarrow 2(3a+b-2)=7(a-b)$

$\Rightarrow 6a+2b-4=7a-7b$

$\Rightarrow a-9b+4=0...........(2)$

Now, Subtracting (2) from (1) we get

$\Rightarrow 4b-4=0$

$\Rightarrow b=1$

Substituting this value in (1)

$\Rightarrow a-5(1)=0$

$\Rightarrow a=5$

Hence, $a=5\:and\:b=1$.

Exams
Articles
Questions