# Q4.    If a and b are distinct integers, prove that$a - b$ is a factor of $a^n - b^n$ , whenever n is a positive integer. [Hint: write $a^n = (a - b + b)^n$ and expand]

we need to prove,

$a^n-b^n=k(a-b)$  where k is some natural number.

Now let's add and subtract b from a so that we can prove the above result,

$a=a-b+b$

$a^n=(a-b+b)^n=[(a-b)+b]^n$

$=^nC_0(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_nb^n$

$=(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_{n-1}(a-b)b^{n-1}+b^n$$\Rightarrow a^n-b^n=(a-b)[(a-b)^{n-1}+^nC_2(a-b)^{n-2}+........+^nC_{n-1}b^{n-1}]$

$\Rightarrow a^n-b^n=k(a-b)$

Hence,$a - b$ is a factor of $a^n - b^n$.

## Related Chapters

### Preparation Products

##### Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
##### Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
##### Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
##### Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-