# Q : 19     If the lines  $\small y=3x+1$  and  $\small 2y=x+3$  are equally inclined to the line $\small y=mx+4$ , find the value of  $m$.

Given equation of lines are
$\small y=3x+1 \ \ \ \ \ \ \ \ \ \ -(i)$
$\small 2y=x+3 \ \ \ \ \ \ \ \ \ \ -(ii)$
$\small y=mx+4 \ \ \ \ \ \ \ \ \ \ -(iii)$
Now, it is given that line (i) and (ii)  are equally inclined to the line (iii)
Slope of line $\small y=3x+1$  is  ,  $\small m_1=3$
Slope of line $\small 2y=x+3$ is , $\small m_2= \frac{1}{2}$
Slope of line $\small y=mx+4$ is , $\small m_3=m$
Now, we know that
$\tan \theta = \left | \frac{m_1-m_2}{1+m_1m_2} \right |$
Now,
$\tan \theta_1 = \left | \frac{3-m}{1+3m} \right |$              and                  $\tan \theta_2 = \left | \frac{\frac{1}{2}-m}{1+\frac{m}{2}} \right |$

It is given that $\tan \theta_1=\tan \theta_2$
Therefore,
$\left | \frac{3-m}{1+3m} \right |= \left | \frac{1-2m}{2+m} \right |$
$\frac{3-m}{1+3m}= \pm\left ( \frac{1-2m}{2+m} \right )$
Now, if     $\frac{3-m}{1+3m}= \left ( \frac{1-2m}{2+m} \right )$
Then,
$(2+m)(3-m)=(1-2m)(1+3m)$
$6+m-m^2=1+m-6m^2$
$5m^2=-5$
$m= \sqrt{-1}$
Which is not  possible
Now,  if $\frac{3-m}{1+3m}= -\left ( \frac{1-2m}{2+m} \right )$
Then,

$(2+m)(3-m)=-(1-2m)(1+3m)$
$6+m-m^2=-1-m+6m^2$
$7m^2-2m-7=0$
$m = \frac{-(-2)\pm \sqrt{(-2)^2-4\times 7\times (-7)}}{2\times 7}= \frac{2\pm \sqrt{200}}{14}= \frac{1\pm5\sqrt2}{7}$

Therefore, the value of  m is $\frac{1\pm5\sqrt2}{7}$

## Related Chapters

### Preparation Products

##### Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
##### Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
##### Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
##### Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-