Q&A - Ask Doubts and Get Answers
Q

On comparing the ratios a 1 / a 2 , b 1 / b2 and c 1 / c 2, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident: (ii) 9x + 3y + 12 = 0 18x + 6y + 24 = 0

Q2.    On comparing the ratios \frac{a_1}{a_2}\frac{b_1}{b_2} and \frac{c_1}{c_2}, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident:

                    (ii)    \\9x + 3y + 12 = 0\\ 18x + 6y + 24 = 0

Answers (1)
Views

Given, Equations,

\\9x + 3y + 12 = 0\\ 18x + 6y + 24 = 0

Comparing these equations with  a_1x+b_1y+c_1=0\:and\:a_2x+b_2y+c_2=0, we get 

\\\frac{a_1}{a_2}=\frac{9}{18}=\frac{1}{2},\\\:\frac{b_1}{b_2}=\frac{3}{6}=\frac{1}{2}\:and \\\:\frac{c_1}{c_2}=\frac{12}{24}=\frac{1}{2}

As we can see 

\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}

It means that both lines are coincident.

Exams
Articles
Questions