# Q : 19     Point  $R(h,k)$  divides a line segment between the axes in the ratio $1:2$ .  Find  equation of the line.

Answers (1)
G Gautam harsolia

Let the coordinates of Point A is (x,0) and of point B is (0,y)
It is given that point R(h , k) divides the line segment between the axes in the ratio $1:2$
Therefore,
R(h , k) $=\left ( \frac{1\times 0+2\times x}{1+2},\frac{1\times y+2\times 0}{1+2} \right )=\left ( \frac{2x}{3},\frac{y}{3} \right )$
$h = \frac{2x}{3} \ \ and \ \ k = \frac{y}{3}$
$x = \frac{3h}{2} \ \ and \ \ y = 3k$
Therefore, coordinates of point A is $\left ( \frac{3h}{2},0 \right )$  and of point B is $(0,3k)$
Now, slope of line passing through points $\left ( \frac{3h}{2},0 \right )$ and $(0,3k)$  is
$m = \frac{3k-0}{0-\frac{3h}{2}}= \frac{2k}{-h}$
Now, equation of line passing through point $(0,3k)$  and with slope $-\frac{2k}{h}$ is
$(y-3k)=-\frac{2k}{h}(x-0)$
$h(y-3k)=-2k(x)$
$yh-3kh=-2kx$
$2kx+yh=3kh$
Therefore, the equation of line is $2kx+yh=3kh$

Exams
Articles
Questions