# Q(7)   Prove that  $\small \sin3x + \sin2x - \sin x = 4\sin x \cos\frac{x}{2}\cos\frac{3x}{2}$

We know that
$cosA + cosB = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$sinA - sinB = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$

we use these identities
$sin3x - sinx = 2\cos\frac{3x+x}{2}\sin\frac{3x-x}{2}$

$= 2\cos2x\sin x$

sin2x + $2\cos2x\sin x$  =   2sinx cosx  + $2\cos2x\sin x$
take 2 sinx common
$2sinx ( cosx + cos2x) = 2sinx(2\cos\frac{2x+x}{2}\cos\frac{2x-x}{2})$

$= 2sinx(2\cos\frac{3x}{2}\cos\frac{x}{2})$
$= 4sinx\cos\frac{3x}{2}\cos\frac{x}{2}$

=  R.H.S.

## Related Chapters

### Preparation Products

##### JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
##### Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
##### Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-