# Q (6)  Prove that  $\small \frac{(\sin 7x + \sin 5x) + (\sin9x + \sin 3x)}{(\cos7x + \cos5x) + (\cos9x + \cos3x)} = \tan6x$

We know that

$sinA + sinB = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
and
$cosA + cosB =2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$

We use these two identities in our problem

sin7x + sin5x  =  $2\sin\frac{7x+5x}{2}\cos\frac{7x-5x}{2}$    =       $2\sin6x\cos x$

sin 9x + sin 3x = $2\sin\frac{9x+3x}{2}\cos\frac{9x-3x}{2}$  =    $2\sin6x\cos 3x$

cos 7x + cos5x = $2\cos\frac{7x+5x}{2}\cos\frac{7x-5x}{2}$   =   $2\cos6x\cos x$

cos 9x + cos3x = $2\cos\frac{9x+3x}{2}\cos\frac{9x-3x}{2}$  =$2\cos6x\cos 3x$

$\small \frac{(\sin 7x + \sin 5x) + (\sin9x + \sin 3x)}{(\cos7x + \cos5x) + (\cos9x + \cos3x)}$      =      $\small \frac{(2\sin 6x\cos x) + (2\sin6x \cos3x)}{(2\cos6x cos x) + (2\cos6x cos3x)}$

=     $\small \frac{2\sin6x(\cos x + \cos3x)}{2\cos6x (cos x + cos3x)} = \tan6x$       = R.H.S.                       $\small \left ( \because \frac{\sin x}{\cos x} = \tan x\right )$

## Related Chapters

### Preparation Products

##### JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
##### Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
##### Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-