Q3  Prove that the following are irrationals : 

(i) 1/ \sqrt 2 

Answers (1)

Let us assume \frac{1}{\sqrt{2}} is rational.

This means \frac{1}{\sqrt{2}} can be written in the form \frac{p}{q} where p and q are co-prime integers.

\\\frac{1}{\sqrt{2}}=\frac{p}{q}\\ \sqrt{2}=\frac{q}{p}

Since p and q are co-prime integers \frac{q}{p} will be rational, this contradicts the fact that  \sqrt{2} is irrational. This contradiction arises because our initial assumption that \frac{1}{\sqrt{2}}  is rational was wrong. Therefore \frac{1}{\sqrt{2}} is irrational.

Most Viewed Questions

Preparation Products

Knockout NEET May 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET May 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions