Q : 11        Prove that the line through the point  (x_1,y_1)  and parallel to the line   Ax+By+C=0   is   A(x-x_1)+B(y-y_1)=0.

Answers (1)

It is given that line is parallel to the line  Ax+By+C=0
Therefore, their slopes are equal
The slope of line Ax+By+C=0  , m'= \frac{-A}{B}
Let the slope of other line be m
Then,
m =m'= \frac{-A}{B}
Now, the equation of the line passing through the point (x_1,y_1)  and with slope -\frac{A}{B}  is
(y-y_1)= -\frac{A}{B}(x-x_1)
B(y-y_1)= -A(x-x_1)
A(x-x_1)+B(y-y_1)= 0
Hence proved 

Preparation Products

Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
Buy Now
Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Exams
Articles
Questions