Q&A - Ask Doubts and Get Answers
Q

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Q6   Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Answers (1)
Views

In parallelogram ABCD, AF and DE are altitudes drawn on DC and produced BA.

In \triangleDEA, by Pythagoras theorem

DA^2=DE^2+EA^2.......................1

In \triangleDEB, by Pythagoras theorem

DB^2=DE^2+EB^2

DB^2=DE^2+(EA+AB)^2

DB^2=DE^2+(EA)^2+(AB)^2+2.EA.AB

DB^2=DA^2+(AB)^2+2.EA.AB....................................2

In \triangleADF, by Pythagoras theorem

DA^2=AF^2+FD^2

In \triangleAFC, by Pythagoras theorem

AC^2=AF^2+FC^2=AF^2+(DC-FD)^2

\Rightarrow AC^2=AF^2+(DC)^2+(FD)^2-2.DC.FD

\Rightarrow AC^2=(AF^2+FD^2)+(DC)^2-2.DC.FD

\Rightarrow AC^2=AD^2+(DC)^2-2.DC.FD.......................3

Since ABCD is a parallelogram.

SO, AB=CD  and BC=AD

In \triangle DEA\, and\, \triangle ADF,

\angle DEA=\angle AFD\, \, \, \, \, \, \, (each 90 \degree)

\angle DAE=\angle ADF      (AE||DF)

AD=AD  (common)

\triangle DEA\, \cong \, \triangle ADF,        (ASA rule)

\Rightarrow EA=DF.......................6

Adding 2 and, we get

DA^2+AB^2+2.EA.AB+AD^2+DC^2-2.DC.FD=DB^2+AC^2\Rightarrow DA^2+AB^2+AD^2+DC^2+2.EA.AB-2.DC.FD=DB^2+AC^2

\Rightarrow BC^2+AB^2+AD^2+2.EA.AB-2.AB.EA=DB^2+AC^2   (From 4 and 6)

\Rightarrow BC^2+AB^2+CD^2=DB^2+AC^2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exams
Articles
Questions