Q (10) Prove the following

\small \sin (n+1)x\sin(n+2)x + \cos(n+1)x\cos(n+2)x =\cos x

Answers (1)
S safeer

Multiply and divide by 2 

= \frac {2\sin(n+1)x \sin(n+2)x + 2\cos (n+1)x\cos(n+2)x}{2}

Now by using identities


-2sinAsinB = cos(A+B) - cos(A-B)
2cosAcosB =  cos(A+B) + cos(A-B)

\frac{\left \{ -\left (\cos(2n+3)x - \cos (-x) \right ) + \left ( \cos(2n+3) +\cos(-x) \right )\right \}}{2}\\ \\ \left ( \because \cos(-x) = \cos x \right )\\ \\ = \frac{2\cos x}{2} = \cos x

                                        R.H.S.

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions