Get Answers to all your Questions

header-bg qa

Show that the function f(x) = |sin x + cos x| is continuous at x = \pi.

Answers (1)

Given,

f(x)=|\sin x+\cos x| \underline{\ldots}(1)

We need to prove that f(x) is continuous at x = π

A function f(x) is said to be continuous at x = c if,

Left hand limit(LHL at x = c) = Right hand limit(RHL at x = c) = f(c).


Mathematically we can represent it as-

\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)

Where h is a very small number very close to 0 (h→0)

Now according to above theory-

f(x) is continuous at x = π if -

\lim _{h \rightarrow 0} f(\pi-h)=\lim _{h \rightarrow 0} f(\pi+h)=f(\pi)

Now,

LHL = \lim _{h \rightarrow 0} f(\pi-h)

 LHL = \lim _{h \rightarrow 0}\{|\sin (\pi-h)+\cos (\pi-h)|\}  {using eqn 1}

\because \sin (\pi-x)=\sin x \& \cos (\pi-x)=-\cos x

\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0}|\sinh -\cosh |

\Rightarrow \mathrm{LHL}=|\sin 0-\cos 0|=|0-1|

\therefore \mathrm{LHL}=1 \underline{\ldots(2)}

Similarly, we proceed for RHL-

\operatorname{RHL}=\lim _{h \rightarrow 0} f(\pi+h)

\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}\{|\sin (\pi+\mathrm{h})+\cos (\pi+\mathrm{h})|\}  {using eqn 1}

\because \sin (\pi+x)=-\sin x \& \cos (\pi+x)=-\cos x

\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}|-\sin \mathrm{h}-\cosh |

\Rightarrow \mathrm{RHL}=|-\sin 0-\cos 0|=|0-1|

\therefore \mathrm{RHL}=1 \ldots(3)

\text { Also, } f(\pi)=|\sin \pi+\cos \pi|=|0-1|=1 \underline{\ldots(4)}

Now from equation 2, 3 and 4 we can conclude that

\lim _{h \rightarrow 0} \mathrm{f}(\pi-\mathrm{h})=\lim _{h \rightarrow 0} \mathrm{f}(\pi+\mathrm{h})=\mathrm{f}(\pi)=1

 f(x) is continuous at x = π is proved

Posted by

infoexpert21

View full answer