Show that the function f(x) = |sin x + cos x| is continuous at x = .
Given,
We need to prove that f(x) is continuous at x = π
A function f(x) is said to be continuous at x = c if,
Left hand limit(LHL at x = c) = Right hand limit(RHL at x = c) = f(c).
Mathematically we can represent it as-
Where h is a very small number very close to 0 (h→0)
Now according to above theory-
f(x) is continuous at x = π if -
Now,
LHL =
⇒ LHL = {using eqn 1}
Similarly, we proceed for RHL-
{using eqn 1}
Now from equation 2, 3 and 4 we can conclude that
∴ f(x) is continuous at x = π is proved