B)
Given that,
Let g(x) = sinx and h(x) = |x|
Then, f(x) = hog(x)
We know that, modulus function and sine function are continuous everywhere.
Since, composition of two continuous functions is a continuous function.
Hence, f(x) = hog(x) is continuous everywhere.
Now, v(x)=|x| is not differentiable at x=0.
So, f(x) is not differentiable where
We know that at
Hence, f(x) is everywhere continuous but not differentiable