Given:
Now, we have to show that f(x) verify the Rolle’s Theorem
First of all, Conditions of Rolle’s theorem are:
a) f(x) is continuous at (a,b)
b) f(x) is derivable at (a,b)
c) f(a) = f(b)
If all three conditions are satisfied then there exist some ‘c’ in (a,b) such that f’(c) = 0
Condition 1:
Since, f(x) is a logarithmic function and logarithmic function is continuous for all values of x.
Hence, condition 1 is satisfied.
Condition 2:
Hence, condition 2 is satisfied.
Condition 3:
Hence, condition 3 is also satisfied.
Now, let us show that such that f(c)=0
Put x=c in above equation, we get