Get Answers to all your Questions

header-bg qa

Solve each of the following equations: 

Q: 8        \sqrt{3}x^2-\sqrt{2}x+3\sqrt{3}=0

Answers (1)

best_answer

Given equation is
\sqrt{3}x^2-\sqrt{2}x+3\sqrt{3}=0 
Now, we know that the roots of the quadratic equation are given by the formula
\frac{-b\pm \sqrt{b^2-4ac}}{2a}
In this case the value of a = \sqrt 3 , b =-\sqrt2 \ and \ c = 3\sqrt3
Therefore,
\frac{-(-\sqrt2)\pm \sqrt{(-\sqrt2)^2-4.\sqrt3.3\sqrt3}}{2.\sqrt3}= \frac{\sqrt2\pm\sqrt{2-36}}{2\sqrt3} = \frac{\sqrt2\pm\sqrt{-34}}{2\sqrt3}=\frac{\sqrt2\pm\sqrt{34}i}{2\sqrt3}
Therefore, the solutions of the equation are   \frac{\sqrt2\pm\sqrt{34}i}{2\sqrt3}

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads