Q2.    Solve the problems given in Example 1.

 (i) x^2-45x+324 = 0

 (ii) x^2-55x+750 = 0

 

Answers (1)

From Example 1 we get:

Equations:

(i) x^2-45x+324 = 0

Solving by factorization method: 

Given the quadratic equation: x^2-45x+324 = 0

Factorization gives, x^2-36x-9x+324 = 0

\Rightarrow x(x-36) - 9(x-36) = 0

\Rightarrow (x-9)(x-36) = 0

\Rightarrow x=9\ or\ 36

Hence, the roots of the given quadratic equation are x=9\ and \ 36.

Therefore, John and Jivanti have 36 and 9 marbles respectively in the beginning.

(ii) x^2-55x+750 = 0

Solving by factorization method: 

Given the quadratic equation: x^2-55x+750 = 0

Factorization gives, x^2-30x-25x+750 = 0

\Rightarrow x(x-30) -25(x-30) = 0

\Rightarrow (x-25)(x-30) = 0

\Rightarrow x=25\ or\ 30

Hence, the roots of the given quadratic equation are x=25\ and \ 30.

Therefore, the number of toys on that day was 30\ or\ 25.

 

 

Exams
Articles
Questions