# Q11.    Sum of the areas of two squares is 468 m2 . If the difference of their perimeters is 24 m, find the sides of the two squares.

Answers (1)
D Divya Prakash Singh

Let the sides of the squares be $'x'\ and\ 'y'$.              (NOTE: length are in meters)

And the perimeters will be: $4x\ and\ 4y$ respectively.

Areas $x^2\ and\ y^2$ respectively.

It is given that,

$x^2 + y^2 = 468\ m^2$                    .................................(1)

$4x-4y = 24\ m$                       .................................(2)

Solving both equations:

$x-y = 6$  or  $x= y+6$  putting in equation (1), we obtain

$(y+6)^2 +y^2 = 468$

$\Rightarrow 2y^2+36+12y = 468$

$\Rightarrow y^2+6y - 216 = 0$

Solving by the factorizing method:

$\Rightarrow y^2+18y -12y-216 = 0$

$\Rightarrow y(y+18) -12(y+18) = 0$

$\Rightarrow (y+18)(y-12)= 0$

Here the roots are: $\Rightarrow y = -18,\ 12$

As the sides of a square cannot be negative.

Therefore, the sides of the squares are $12m$ and $(12\ m+6\ m) = 18\ m$.

Exams
Articles
Questions