Get Answers to all your Questions

header-bg qa

Q5.    The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.

Answers (1)


Let the length of the base of the triangle be b\ cm.

Then, the altitude length will be: b-7\ cm.

Given if hypotenuse is 13\ cm.

Applying the Pythagoras theorem; we get

Hypotenuse^2 = Perpendicular^2 + Base^2

So, (13)^2 = (b-7)^2 +b^2

\Rightarrow 169 = 2b^2+49-14b

\Rightarrow 2b^2-14b-120 = 0  Or  b^2-7b-60 = 0

\Rightarrow b^2-12b+5b-60 = 0

\Rightarrow b(b-12) + 5(b-12) = 0

\Rightarrow (b-12)(b+5) = 0

\Rightarrow b= 12\ or\ -5

But, the length of the base cannot be negative. 

Hence the base length will be 12\ cm.

Therefore, we have

Altitude length = 12cm -7cm = 5cm  and  Base length = 12\ cm




Posted by

Divya Prakash Singh

View full answer