# Q10.    The coefficients of the $(r-1)$th , rth and $(r + 1)$th terms in the expansion of $(x+1)^{n}$ are in the ratio 1 : 3 : 5. Find n and r.

As we know that the general  $(r+1)^{th}$ term  $T_{r+1}$ in the binomial expansion of  $(a+b)^n$  is given by

$T_{r+1}=^nC_ra^{n-r}b^r$

So,

$(r+1)^{th}$ Term in  the expansion of  $(x+1)^{n}$:

$T_{r+1}=^nC_rx^{n-r}1^r=^nC_rx^{n-r}$

$r^{th}$ Term in  the expansion of  $(x+1)^{n}$:

$T_{r}=^nC_{r-1}x^{n-r+1}1^{r-1}=^nC_{r-1}x^{n-r+1}$

$(r-1)^{th}$ Term in  the expansion of  $(x+1)^{n}$:

$T_{r-1}=^nC_{r-2}x^{n-r+2}1^{r-2}=^nC_{r-2}x^{n-r+2}$

Now, As given in the question,

$T_{r-1}:T_r:T_{r+1}=1:3:5$

$^nC_{r-2}:^nC_{r-1}:^nC_{r}=1:3:5$

$\frac{n!}{(r-2)!(n-r+2)!}:\frac{n!}{(r-1)!(n-r+1)!}:\frac{n!}{r!(n-r)!}=1:3:5$

From here, we get ,

$\frac{r-1}{n-r+2}=\frac{1}{3}\:\:and\:\:\frac{r}{n-r+1}=\frac{3}{5}$

Which can be written as

$n-4r+5=0\:\:and\:\:3n-8r+3=0$

From these equations we get,

$n=7\:\:and\:\:r=3$

Exams
Articles
Questions