Get Answers to all your Questions

header-bg qa

Q1  (1)   Verify that the numbers given alongside of the cubic polynomials below are their zeroes.
Also verify the relationship between the zeroes and the coefficients in each case:
2x^3 + x^2 - 5x +2 ; \frac{1}{2} , 1 , -2

Answers (1)

best_answer

p(x) = 2x3 + x2 -5x + 2

\\p(\frac{1}{2})=2\times \left ( \frac{1}{2} \right )^{3}+\left ( \frac{1}{2} \right )^{2}-5\times \frac{1}{2}+2\\ p(\frac{1}{2})=\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2\\ p(\frac{1}{2})=0

p(1) = 2 x 13 + 12 - 5 x 1 + 2

p(1) =2 + 1 - 5 + 2

p(1) = 0

p(-2) = 2 x (-2)3 + (-2)2 - 5 x (-2) +2

p(-2) = -16 + 4 + 10 + 2

p(-2) = 0

Therefore the numbers given alongside the polynomial are its zeroes

Verification of relationship between the zeroes and the coefficients

Comparing the given polynomial with ax3 + bx2 + cx + d, we have

a = 2, b = 1, c = -5, d = 2

The roots are \alpha ,\beta \ and\ \gamma

\\\alpha=\frac{1}{2}\\ \beta =1\\ \gamma =-2

\\\alpha+\beta +\gamma \\ =\frac{1}{2}+1+(-2)\\ =-\frac{1}{2}\\ =-\frac{b}{a}

Verified

\\\alpha\beta +\beta \gamma +\gamma \alpha \\ =\frac{1}{2}\times 1+1\times (-2)+(-2)\times \frac{1}{2}\\ =\frac{-5}{2}\\ =\frac{c}{a}

Verified

\\\alpha\beta\gamma \\=\frac{1}{2}\times 1\times -2\\ =-1 \\=-\frac{2}{2}\\ =-\frac{d}{a}

Verified

Posted by

Sayak

View full answer